Suppliers
Contact Us
GENTAUR Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 Fax 0032 16 50 90 45 This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it. |
GENTAUR BULGARIA
53 Iskar Str. 1191 Kokalyane, Sofia
Tel 0035924682280
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GmbH Marienbongard 20
52062 Aachen Deutschland
Tel (+49) 0241 56 00 99 68
Fax (+49) 0241 56 00 47 88 This email address is being protected from spambots. You need JavaScript enabled to view it." style="font-family: Arial, Tahoma, Verdana, Helvetica; line-height: 15.59375px; ">
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it." style="font-size: 12px; line-height: 1.3em;">
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Spain
Tel 0911876558
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
Phone/Fax:
(408) 780-0908
This email address is being protected from spambots. You need JavaScript enabled to view it.
GENPRICE Inc. invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Serbia, Macedonia,
Montenegro, Croatia:
Tel 0035929830070
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Romania
Tel 0035929830070
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Greece
Tel 00302111768494
Fax 0032 16 50 90 45
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
Other countries
Luxembourg +35220880274
Schweiz Züri +41435006251
Danmark +4569918806
Österreich +43720880899
Ceská republika Praha +420246019719
Ireland Dublin +35316526556
Norge Oslo +4721031366
Finland Helsset +358942419041
Sverige Stockholm +46852503438
Magyarország Budapest +3619980547
Epigenetics enigma resolved: First structure of enzyme that removes methylation
Scientists have obtained the first detailed molecular structure of a member of the Tet family of enzymes.
The finding is important for the field of epigenetics because Tet enzymes chemically modify DNA, changing signposts that tell the cell's machinery "this gene is shut off" into other signs that say "ready for a change."
Tet enzymes' roles have come to light only in the last five years; they are needed for stem cells to maintain their multipotent state, and are involved in early embryonic and brain development and in cancer.
The results, which could help scientists understand how Tet enzymes are regulated and look for drugs that manipulate them, are scheduled for publication in Nature.
Researchers led by Xiaodong Cheng, PhD, determined the structure of a Tet family member from Naegleria gruberi by X-ray crystallography. The structure shows how the enzyme interacts with its target DNA, bending the double helix and flipping out the base that is to be modified.
This is the structure of the Tet enzyme with DNA. Note the purple ball at the active site, close to which one DNA base is flipped out of the double helix. Also note the degree to which the double helix is bent. Credit: Xiaodong Cheng, Emory University
"This base flipping mechanism is also used by other enzymes that modify and repair DNA, but we can see from the structure that the Tet family enzymes interact with the DNA in a distinct way," Cheng says.
Cheng is professor of biochemistry at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar. The first author of the paper is research associate Hideharu Hashimoto, PhD. A team led by Yu Zheng, PhD, a senior research scientist at New England Biolabs, contributed to the paper by analyzing the enzymatic activity of Tet using liquid chromatography–mass spectrometry.
Using oxygen, Tet enzymes change 5-methylcytosine into 5-hydroxymethylcytosine and other oxidized forms of methylcytosine. 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) are both epigenetic modifications of DNA, which change how DNA is regulated without altering the letters of the genetic code itself.
5-mC is generally found on genes that are turned off or on repetitive regions of the genome. 5-mC helps shut off genes that aren't supposed to be turned on (depending on the cell type) and changes in 5-mC's distribution underpin a healthy cell's transformation into a cancer cell.
In contrast to 5-mC, 5-hmC appears to be enriched on active genes, especially in brain cells. Having a Tet enzyme form 5-hmC seems to be a way for cells to erase or at least modify the "off" signal provided by 5-mC, although the functions of 5-hmC are an active topic of investigation, Cheng says.
Alterations of the Tet enzymes have been found in forms of leukemia, so having information on the enzymes' molecular structure could help scientists design drugs that interfere with them.
N. gruberi is a single-celled organism found in soil or fresh water that can take the form of an amoeba or a flagellate; its close relative N. fowleri can cause deadly brain infections. Cheng says his team chose to study the enzyme from Naegleria because it was smaller and simpler and thus easier to crystallize than mammalian forms of the enzyme, yet still resembles mammalian forms in protein sequence.
Mammalian Tet enzymes appear to have an additional regulatory domain that the Naegleria forms do not; understanding how that domain works will be a new puzzle opened up by having the Naegleria structure, Cheng says.