A computational model developed by researchers at Rensselaer Polytechnic Institute is the first to accurately simulate the complex twists of a short sequence of RNA as it folds into a critical hairpin structure known as a "tetraloop." The research, published today in Proceedings of the National Academy of Sciences, is a glimpse into RNA, found in all life on Earth, and could advance a variety of research areas, including the search for new antibiotics and cures for protein-related diseases.
Existing computational models, based on DNA rather than RNA, do not achieve the atomic level accuracy of the new model, said Angel Garcia, head of the Department of Physics, Applied Physics, and Astronomy within the School of Science at Rensselaer, and senior constellation chaired professor in the Biocomputation and Bioinformatics Constellation, who co-wrote the paper with Alan Chen, a post-doctoral fellow at Rensselaer. The new model Garcia and Chen created can simulate the folding of three known versions of a tetraloop, accurate to within one ten-billionth of a meter.
RNA is involved in many biological functions, such as building proteins, coding and decoding genes, and cellular regulation. RNA molecules are composed of strings of four different "bases" —cytosine, guanine, adenine, and uracil—mounted on a sugar-phosphate backbone. Once the sequence is assembled, the individual bases interact with their neighbors, twisting and swinging on the hinged chemical bonds that connect them to the backbone. When the process is complete, the RNA has folded into its "tertiary" structure, which influences its function. Although researchers can easily alter the sequence of molecules, without accurate computer modeling there they cannot easily see the tertiary structure of their creation.
"Right now, it takes people from molecular biologists, to virologists, to cell biologists, thousands of dollars and years of study to see the structure of an RNA they have made, altered, or are studying," said Chen. "There are a lot of researchers working on the RNA in viruses and how it attacks the cell, and, while they're easily able to alter the sequence, they're essentially working without ever seeing the effects of their changes in molecular detail. Because of this, there's a lot of trial and error, and our work aimed at helping that."
Garcia and Chen said that, unlike DNA, which typically twists two strands of bases into a classic double-helix, RNA is single-stranded and folds onto itself, forming many unusual structures. A tetraloop is a small section of single-stranded RNA that is looped into the shape of a hairpin, the curve of which is formed by four bases. Even the sequence of bases in a tetraloop is unusual, violating a standard arrangement described by groundbreaking DNA researchers James Watson and Francis Crick.
To create an effective computational model, Garcia and Chen had to match the unique "recipe" of twisting and swinging proscribed by the interactions between the bases.
"Imagine if you try to produce a recipe of Mario Batali," said Garcia, referring to a popular chef. "I tell you it has water, salt, fish, and pasta—go produce his recipe. The problem is, you don't know how much of each, and in what order."
Instead of a recipe of food ingredients, Garcia and Chen created a computational recipe for the interactions of the bases in the sequence of a tetraloop.
"The problem is one of balancing different forces. It's the actions between the bases as they stack on top of each other, the interactions of the bases with water, the rotation of the bases relative to a sugar. Those are things that change the balance," said Garcia.
Garcia said tetraloops are an important area of study because they appear in all organisms, particularly in ribosomes, which manufacture proteins for living cells. Statistically, there could be as many as 256 possible sequences of those four bases, but only three sequences actually appear in tetraloops. Once formed, they are highly stable, outlasting other structures when subjected to the destructive force of increasing heat.
"Tetraloops are sequences which are highly conserved throughout evolution; you find them everywhere, from bacteria to humans," said Garcia. "From one organism to another, many things can change, but when tetraloops change, they change from one sequence of four bases to one of the other three. They stack against each other and they are hyperstable. And there is a reason for them to be arranged the way they are."
Suppliers
Contact Us
GENTAUR Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 Fax 0032 16 50 90 45 This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it. |
GENTAUR BULGARIA
53 Iskar Str. 1191 Kokalyane, Sofia
Tel 0035924682280
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GmbH Marienbongard 20
52062 Aachen Deutschland
Tel (+49) 0241 56 00 99 68
Fax (+49) 0241 56 00 47 88 This email address is being protected from spambots. You need JavaScript enabled to view it." style="font-family: Arial, Tahoma, Verdana, Helvetica; line-height: 15.59375px; ">
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it." style="font-size: 12px; line-height: 1.3em;">
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Spain
Tel 0911876558
This email address is being protected from spambots. You need JavaScript enabled to view it." style="">This email address is being protected from spambots. You need JavaScript enabled to view it.
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
Phone/Fax:
(408) 780-0908
This email address is being protected from spambots. You need JavaScript enabled to view it.
GENPRICE Inc. invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Serbia, Macedonia,
Montenegro, Croatia:
Tel 0035929830070
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Romania
Tel 0035929830070
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
GENTAUR Greece
Tel 00302111768494
Fax 0032 16 50 90 45
This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
Other countries
Luxembourg +35220880274
Schweiz Züri +41435006251
Danmark +4569918806
Österreich +43720880899
Ceská republika Praha +420246019719
Ireland Dublin +35316526556
Norge Oslo +4721031366
Finland Helsset +358942419041
Sverige Stockholm +46852503438
Magyarország Budapest +3619980547