Contact Us

GENTAUR Europe

 GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45 
Fax 0032 16 50 90 45
This email address is being protected from spambots. You need JavaScript enabled to view it.  

Gentaur Bulgaria

 GENTAUR BULGARIA
53 Iskar Str. 1191 Kokalyane, Sofia
Tel 0035924682280 
Fax 0035929830072
This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR France

     GENTAUR France SARL
    9, rue Lagrange, 75005 Paris 
    Tel 01 43 25 01 50 
    Fax 01 43 25 01 60
    This email address is being protected from spambots. You need JavaScript enabled to view it.
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    Gentaur Germany

      GmbH Marienbongard 20
    52062 Aachen Deutschland
    Tel (+49) 0241 56 00 99 68 
    Fax (+49) 0241 56 00 47 88 
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    This email address is being protected from spambots. You need JavaScript enabled to view it.

     

    Gentaur London

     GENTAUR Ltd. 
    Howard Frank Turnberry House 
    1404-1410 High Road 
    Whetstone London N20 9BH 
    Tel 020 3393 8531 
    Fax 020 8445 9411
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Poland

     GENTAUR Poland Sp. z o.o. 

    ul. Grunwaldzka 88/A m.2

    81-771 Sopot, Poland
    Tel  058 710 33 44
    Fax 058 710 33 48 
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Nederland

     GENTAUR Nederland BV
    Kuiper 1 
    5521 DG Eersel Nederland
    Tel 0208-080893 
    Fax 0497-517897
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    Gentaur Italy

     GENTAUR SRL IVA IT03841300167

    Piazza Giacomo Matteotti, 6, 24122 Bergamo
    Tel 02 36 00 65 93 
    Fax 02 36 00 65 94
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Spain

     GENTAUR Spain
    Tel 0911876558
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    Genprice USA
    Gentaur Serbia

    serbiaSerbia, Macedonia FlagMacedonia, 

    montenegro-flagMontenegro, croatiaCroatia: 
    Tel 0035929830070 
    Fax 0035929830072
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Romania

    romGENTAUR Romania

    Tel 0035929830070 
    Fax 0035929830072
    This email address is being protected from spambots. You need JavaScript enabled to view it.

    GENTAUR Greece

    grGENTAUR Greece 

    Tel 00302111768494 
    Fax 0032 16 50 90 45

    This email address is being protected from spambots. You need JavaScript enabled to view it.

    Other countries

    Other countries
    Luxembourg +35220880274
    Schweiz Züri +41435006251
    Danmark +4569918806
    Österreich +43720880899
    Ceská republika Praha +420246019719
    Ireland Dublin +35316526556
    Norge Oslo +4721031366
    Finland Helsset +358942419041
    Sverige Stockholm +46852503438
    Magyarország Budapest +3619980547

    seal-in-search-symantec

     

     

    Thursday, 10 July 2014 17:28

    P130 Exosome TEM easy kit

    Name Exosome preparation kit for transmission electron microscopy imaging
    Cat. # P130
     
    Application This kit is for preparation of exosome samples for transmission electron microscopy imaging assay. This product is for research use only.
    Product Size 10 reactions
    Description This is an easy-to-use tool helps you to prepare exosome samples for transmission electron microscope imaging, and to get good quality EM images of exosome structure. This kit contains all reagents and material for the experiment. The exosome purity and density is important for TEM assay. We recommend to use our PureExo kits to isolate exosomes before using this kit.
    Shipping / Storage Ship and store at room temperature
    Shelf Life 12 months
    Manual (protocol)  PDF-Icon
    Component 1. Formvar-carbon coated EM mesh 400 grid X 10
    2. Wash buffer (1.5 ml)
    3. EM solution (100 µl)
    Other required materials
    • Parafilm
    • Forceps (Dumont No. 5), clean
    • Whatman No. 1 filter paper
    • Transmission electron microscope (TEM)

    Exosome TEM-gentaur

    Transimission Electron Microscopy

    image by our kit

    Price: 205 €

    Published in Promos

    Using PureEXO kits is much more productive than ultracentrifugation, in terms of both purity and yeild. When extracting exosomal RNA, the PureExo kit produces nearly 4 times better results than the standart ultracentifugation protocols. This was proven using the NanoDrop 8000 spectrophotometer.

    grafika ENG

    PureExo kits are not only cheaper, but also superior to other currently available kits: it guarantees 95% exosome purity and the exosomes themselves are homogeneous, spherical and intact. No more will you have to endure the countless sizes, irregular shapes and the overly damaged exosomes that other kits eventually cause.

    The purity of the yield is verified by Exosomal protein marker, which enhances the accuracy and sensitivity to detect biomarkers carried by exosomes.

    Two verions of kits are available:

    Published in Promos

    Exo-FBS-exosome-exoquick-gentaur-antibodies-depleted-media-bovineExosomes are 60-120 nm membrane vesicles secreted by most cell types in vivo and in vitro. Exosomes are found in blood, urine, amniotic fluid, malignant ascite fluids, urine and in media from cells in culture. Exosomes contain distinct subsets of microRNAs depending upon the cell type from which they are secreted. Standard growth medium for most cells in culture require fetal bovine serum (FBS) as a growth supplement to DMEM. FBS is derived from bovine (cow) serum and contains a high abundance of cow exosome vesicles. These exosomes can interfere or cause significant background issues when studying the exosomes secreted from your cells of interest in standard culture conditions.

    Exo-FBS supports equivalent growth of many types of cells in culture, is devoid of cow CD63 positive exosomes and does not have any measurable bovine microRNAs. Perform your studies of cellular secreted exosomes in culture without the worry of contaminating cow exosomes in your experiments. No ultracentrifugation required. Available as standard FBS supplement or heat inactivated FBS media supplement (treated at 65°C for 15 minutes before bovine exosome removal).

    • Exosome-sized vesicles removed
    • FBS that has been stripped of CD63 positive cow exosomes
    • No detectable cow microRNAs
    • Same cellular growth rates supported as standard FBS
    • Use the same as standard FBS (add 10% in DMEM or RPMI)

     

    ExoQuick benefits
    • No time-consuming ultracentrifugation 
    • Less expensive than costly Antibodies and beads 
    • No complicated syringes required 
    • Compatible with biofluid from any species 
    • More effective than any other method 
    • Isolate intact exosomes for functional studies 
    • Use as little as 100 µl of serum 
    • Start with 5 or 10 ml Media or Urine and use ExoQuick-TC

    Click here for more information

     

     Order Button1

    Published in Top Products

    Important new research from UMass Medical School demonstrates how exosomes shuttle proteins from neurons to muscle cells where they take part in critical signaling mechanisms, an exciting discovery that means these tiny vehicles could one day be loaded with therapeutic agents, such as RNA interference (RNAi), and directly target disease-carrying cells.

    The study, published this month in the journal Neuron, is the first evidence that exosomes can transfer membrane proteins that play an important role in cell-to-cell signaling in the nervous system.

    "There has been a long-held belief that certain cellular materials, such as integral membrane proteins, are unable to pass from one cell to another, essentially trapping them in the cell where they are made," said Vivian Budnik, PhD, professor of neurobiology and lead author of the study. "What we've shown in this study is that these cellular materials can actually move between different cell types by riding in the membrane of exosomes.

    "What is so exciting about this discovery is that these exosomes can deliver materials from one cell, over a distance, to a very specific and different cell," said Dr. Budnik. "Once inside the recipient cell, the materials contained in the exosome can influence or perform processes in the new cell. This raises the enticing possibility that exosomes can be packed with gene therapies, such as RNAi, and delivered to diseased cells where they could have a therapeutic effect for people."

    Discovered in the mid-80s, exosomes have only recently attracted the attention of scientists at large, according to Budnik. Exosomes are small vesicles containing cellular materials such as microRNA, messenger RNAs (mRNAs) and proteins, packaged inside larger, membrane-bound bodies called multivesicular bodies (MVBs) inside cells. When MVBs containing exosomes fuse with the cell plasma membrane, they release these exosome vesicles into the extracellular space. Once outside the cell, exosomes can then travel to other cells, where they are taken up. The recipient cells can then use the materials contained within exosomes, influencing cellular function and allowing the recipient cell to carry out certain processes that it might not be able to complete otherwise.

    Budnik and colleagues made this startling discovery while investigating how the synapses at the end of neurons and nearby muscle cells communicate in the developing Drosophila fruit fly to form the neuromuscular junction (NMJ). The NMJ is essential for transmitting electrical signals between neurons and muscles, allowing the organism to move and control important physiological processes. Alterations of the NMJ can lead to devastating diseases, such as muscular dystrophy and Amyotrophic lateral sclerosis (ALS). Understanding how the NMJ develops and is maintained is important for human health.

    As organisms develop, the synapse and muscle cell need to grow in concert. If one or the other grows too quickly or not quickly enough, it could have dire consequences for the ability of the organism to move and survive. To coordinate development, signals are sent from the neuron to the muscle cell (anterograde signals) and from the muscle cell to the neuron (retrograde signals). However, the identity of these signals and how their release is coordinated is poorly understood.

    Normally, the vesicle protein Synaptotagmin 4 (Syt4) is found in both the synapse and the muscle cells. Previous knockout experiments eliminating the Syt4 protein from Drosophila have resulted in stunted NMJs. Suspecting that Syt4 played an important role in retrograde signaling at the developing NMJ, Budnik and colleagues used knockdown experiments to decrease Syt4 protein levels in either the neurons or the muscle cells. Surprisingly, when RNAi was used to knockdown Syt4 in the neurons alone, Syt4 protein was eliminated in both neurons and muscles. The opposite was not the case. When Syt4 was knocked down in muscle cells only, there was no change in the levels of Syt4 in either muscles or neurons.

    To confirm this, Budnik and colleagues inserted a Syt4 gene into the neurons of a Drosophila mutant completely lacking the normal protein. This restored Syt4 in both neurons and muscle cells. Further experiments suggested that the only source of Syt4 is the neuron. These observations were consistent with the model that Syt4 is actually transferred from neurons to muscle cells. As a transmembrane protein, however, Syt4 was thought to be unable to move from one cell to another through traditional avenues. How the Syt4 protein was moving from neuron to muscle cell was unclear.

    Knowing that exosomes had been observed to carry transmembrane proteins in other systems and from their own work on the Drosophila NMJ, Budnik and colleagues began testing to see if exosomes could be the vehicle responsible for carrying Syt4 form neurons to muscles. "We had previously observed that it was possible to transfer transmembrane proteins across the NMJ through exosomes, a process also observed in the immune system," said Budnik. "We suspect this was how Syt4 was making its way from the neuron to the muscle."

    When exosomes were purified from cultured cells containing Syt4, they found that exosomes indeed contained Syt4. In addition, when these purified exosomes were applied to cultured muscle cells from fly embryos, these cells were able to take up the purified Syt4 exosomes. Taken together, these findings indicate that Syt4 plays a critical role in the signaling process between synapse and muscle cell that allows for coordinated development of the NMJ. While Syt4 is required to release a retrograde signal from muscle to neuron, a component of this retrograde signal must be supplied from the neuron to the muscle. This establishes a positive feedback loop that ensures coordinated growth of the NMJ. Equally important is the finding that this feedback mechanism is enabled by the use of exosomes, which can shuttle transmembrane proteins across cells.

    "While this discovery greatly enhances our understanding of how the neural muscular junction develops and works, it also has tremendous promise as a potential vector for targeted genetic therapies," said Budnik. "More work needs to be done, but this study significantly supports the possibility that exosomes could be loaded with therapeutic agents and delivered to specific cells in patients."

    Published in News